Force Transmissibility Performance of Parallel Manipulators
نویسندگان
چکیده
In this paper, a new force transmission index called the mean force transmission index (MFTI) is proposed, and the force transmissibility analysis procedure is established for parallel manipulators. The MFTI is an extended definition of the force transmission index (FTI) introduced by the authors previously. It is shown that the FTI is a function of the input velocity ratio (IVR) for a multi-DOF mechanism of the same configuration. To represent the force transmissibility by a definite value, the MFTI is defined as the mean value of the normalized FTIs function over the whole range of the IVR . The force transmissibility analysis of two planar parallel manipulators is illustrated using the MFTI method. The result is compared with that of the Jacobian matrix method and the joint force index (JFI) method. It shows that, especially for symmetric parallel manipulators, an approximate inverse-proportionality relationship exists between the JFI and MFTI , and between the maximum input torque/force and MFTI . It is concluded that the MFTI can be used as a quantitative measure of the force transmissibility performance for parallel manipulators. In the end, a design optimization problem is studied by taking the global force transmission index as the objective function. © 2003 Wiley Periodicals, Inc.
منابع مشابه
Force/Motion/Stiffness Transmissibility Analyses of Redundantly Actuated and Overconstrained Parallel Manipulators
Drawing mainly on linear algebra and screw theory, this paper presents a general and systematic approach for force/motion/stiffness transmissibility analyses of redundantly actuated and overconstrained parallel manipulators. A set of normalized transmission indices is proposed for representing the closeness to singularities as well as for dimensional optimization of the redundantly actuated and...
متن کاملPerformance Evaluation of Redundant Parallel Manipulators Assimilating Motion/Force Transmissibility
Performance evaluation is one of the most important issues in the field of parallel kinematic manipulators (PKMs). As a very important class of PKMs, the redundant PKMs have been studied intensively. However, the performance evaluation of this type of PKMs is still unresolved and a challenging endeavor. In this paper, indices that assimilate motion/force trans...
متن کاملTransmission Index Research of Parallel Manipulators Based on Matrix Orthogonal Degree
Performance index is the standard of performance evaluation, and is the foundation of both performance analysis and optimal design for the parallel manipulator. Seeking the suitable kinematic indices is always an important and challenging issue for the parallel manipulator. So far, there are extensive studies in this field, but few existing indices can meet all the requirements, such as simple,...
متن کاملRobust Hybrid Motion Force Control Algorithm for Robot Manipulators
In this paper we present a robust hybrid motion/force controller for rigid robot manipulators. The main contribution of this paper is that the proposed hybrid control system is able to accomplish motion objectives in free directions and force objectives in constrained directions under parametric uncertainty both in robot dynamics and stiffness constraint constant. Also, the given scheme is prov...
متن کاملThe effect of support parameters on the force transmissibility of a flexible rotor
Rotating machinery support design with the aim of reducing the force transmitted to the foundation has significant importance regarding the various applications of these machineries. In this paper presents a rapid approximate method for calculating the optimum support flexibility and damping of flexible rotors to minimize force transmissibility in the vicinity of the rotor first critical speed....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Field Robotics
دوره 20 شماره
صفحات -
تاریخ انتشار 2003